

Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

SSL MFG R&D Workshop, San Jose, CA

Frank Cerio Jun 13-14, 2012

Project Objectives

- 60% reduction in epitaxy manufacturing costs
 - Cost of Ownership reduction using higher throughput PVD AIN buffer
 - Reduction in defect density with PVD buffer (higher brightness)
 - Reduction in non-ESD yield loss through reduction in wafer bow and temperature variations
 - Enablement of GaN/Si processing with PVD buffer
- Phase I Process Development GaN on Si
 - PVD AIN buffer for GaN on Si
 - Epitaxial growth
 - Protection of Substrate from subsequent GaN deposition (Ga chemistry)
 - Stress/Strain control
- Phase II High Volume PVD AIN Buffer Tool
 - Design, build, qualification of system
 - Process transfer
- Phase III Throughput Enhancement
 - In-situ cleaning capability
 - CoO Reduction demonstration

Year One

Epitaxial Growth

- Epitaxial quality buffer layers achieved with PVD deposition!!
- Further progress made to reduce non-epi interfacial layer and improve PVD AIN film quality

Epitaxial Growth

High Volume Manufacture PVD AIN Buffer Layer Tool System Currently Under Test

 High Volume Manufacturing System Development progressing to schedule

Conclusions

- All of the tasks for Phase I and II have been completed
- Two milestones to be met achievable by September
 - 1. Further AIN film quality improvement
 - 2. Complete elimination of Si melt back to meet GaN targets
- Process qualification (demo readiness) by end of September

